TRAINING CURRICULUM and LESSON PLANS

Endotracheal Intubation Endorsement

Curriculum Objectives and Sample Lesson Plans for the EMT-Basic Endotracheal Intubation Endorsement *

* This endorsement is inclusive of the EMT-B Airway Endorsement (DLT)

Montana Department of Labor and Industry Board of Medical Examiners

The purpose of the Endotracheal Intubation Endorsement for EMT-B is to provide the EMT-B with the knowledge and skills to manage difficult airways and initiate corrective action.

Patient care should always be based on patient presentation and Montana Prehospital Treatment Protocols.

EMT-B ENDORSEMENT: ET

COGNITIVE OBJECTIVES

At the completion of this lesson, the EMT-Basic endotracheal intubation endorsement student will be to place an endotracheal tube in any unconscious / unresponsive (no gag response) over the age of 12 years old *. The lesson plans contain a review of airway management, oxygenation and ventilation to assure competency. This endorsement is inclusive of the airway endorsement (DLT).

* Pediatric issued are contained in the lesson plans as a review of pediatric airway management.

COGNITIVE OBJECTIVES

At the completion of this unit, the EMT-Basic endotracheal intubation endorsement student will be able to:

DECLARATIVE

- I. Introduction
 - A. The body's need for oxygen
 - B. Primary objective of emergency care
 - 1. Ensure optimal ventilation
 - a. Delivery of oxygen
 - b. Elimination of CO₂
 - C. Brain death occurs within 6 to 10 minutes
 - D. Major prehospital causes of preventable death
 - 1. Early detection
 - 2. Early intervention
 - 3. Lay-person BLS education
 - E. Most often neglected of prehospital skills
 - 1. Basics taken for granted
 - 2. Poor techniques
 - a. BVM seal
 - b. Improper positioning
 - c. Failure to reassess
- II. Anatomy of upper airway
 - A. Function of the upper airway
 - 1. Warm
 - 2. Filter
 - 3. Humidify
 - B. Pharynx
 - 1. Nasopharynx
 - a. Formed by the union of facial bones
 - b. Orientation of nasal floor is towards the ear not the eye
 - c. Separated by septum

- d. Lined with
 - 1) Mucous membranes
 - 2) Cilia
- e. Turbinate
 - 1) Parallel to nasal floor
 - 2) Provide increased surface area for air
 - a) Filtration
 - b) Humidifying
 - c) Warming
- f. Sinuses
 - 1) Cavities formed by cranial bones
 - 2) Appear to further trap bacteria and act as tributaries for fluid to and from eustachian tubes and tear ducts
 - a) Commonly become infected
 - b) Fracture of certain sinus bones may cause cerebro-spinal fluid (CSF) leak
- g. Tissues extremely delicate and vascular
 - 1) Improper or overly aggressive placement of tubes or airways will cause significant bleeding which may not be controlled by direct pressure
- 2. Oropharynx
 - a. Teeth
 - 1) 32 adult
 - 2) Requires significant force to dislodge
 - 3) May fracture or avulse causing obstruction
 - b. Tongue
 - 1) Large muscle attached at the mandible and hyoid bones
 - 2) Most common airway obstruction
 - c. Palate
 - 1) Roof of mouth separates oro/ nasopharynx
 - a) Anterior is hard palate
 - b) Posterior (beyond the teeth) is soft palate
 - d. Adenoids
 - 1) Lymph tissue located in the mouth and nose that filters bacteria
 - 2) Frequently infected and swollen
 - e. Posterior tongue
 - f. Epiglottis
 - g. Vallecula
 - 1) "Pocket" formed by the base of the tongue and epiglottis
 - 2) Important landmark for endotracheal intubation

C. Larynx

- 1. Attached to hyoid bone
 - a. "Horseshoe" shaped bone between the chin and mandibular angle
 - b. Supports trachea
 - c. Made of cartilage
- 2. Thyroid cartilage
 - a. First tracheal cartilage
 - b. "Shield shaped"
 - 1) Cartilage anterior
 - 2) Smooth muscle posterior

- c. Laryngeal prominence
 - 1) "Adam's Apple" anterior prominence of thyroid cartilage
 - 2) Glottic opening directly behind
- 3. Glottic opening
 - a. Narrowest part of adult trachea
 - b. Patency heavily dependent on muscle tone
 - c. Contain vocal bands
 - 1) White bands of cartilage
 - 2) Produce voice
- 4. Arytenoid cartilage
 - a. "Pyramid like" posterior attachment of vocal bands
 - b. Important landmark for endotracheal intubation
- 5. Pyriform fossae
 - a. "Hollow pockets" along the lateral borders of the larynx
- Cricoid ring
 - a. First tracheal ring
 - b. Completely cartilaginous
 - c. Compression occludes esophagus (Sellick maneuver)
- 7. Cricothyroid membrane
 - a. Fibrous membrane between cricoid and thyroid cartilage
 - b. Site for surgical and alternative airway placement
- 8. Associated structures
 - a. Thyroid gland
 - 1) Located below cricoid cartilage
 - 2) Lies across trachea and up both sides
 - b. Carotid arteries
 - 1) Branches cross and lie closely alongside trachea
 - c. Jugular veins
 - 1) Branch across and lie close to trachea
- III. Anatomy of lower airway
 - A. Function of the lower airway
 - 1. Exchange of O₂ and CO₂
 - B. Location of the lower airway
 - 1. From fourth cervical vertebrae to xyphoid process
 - 2. From glottic opening to pulmonary capillary membrane
 - C. Structures of the lower airway
 - 1. Trachea
 - a. Trachea bifurcates at carina into
 - 1) Right and left mainstem bronchi
 - 2) Right mainstem has lesser angle
 - a) Foreign bodies, ET tubes commonly displace here
 - 3) Lined with
 - a) Mucous cells
 - b) Beta 2 receptors dilate bronchioles
 - 2. Bronchi
 - a. Mainstem bronchi enter lungs at hilum
 - b. Branch into narrowing secondary and tertiary bronchi which branch into bronchioles

- 3. Bronchioles
 - a. Branch into alveolar ducts which end at alveolar sacs
- 4. Alveoli
 - a. "Balloon like" clusters
 - b. Site of gas exchange
 - c. Lined with surfactant
 - 1) Decreases surface tension of alveoli which facilitates ease of expansion
 - 2) Alveoli become thinner as they expand which makes diffusion of O₂/ CO₂ easier
 - 3) If surfactant is decreased or alveoli are not inflated, alveoli collapse (atelectasis)
- 5. Lungs
 - a. Right lung
 - 1) 3 lobes
 - b. Left lung
 - 1) 2 lobes
 - c. Lobes made of parenchymal tissue
 - d. Membranous outer lining called pleura
 - e. Lung capacity
- IV. Differences in pediatric airway (for general information and review)
 - A. Pharynx
 - 1. A proportionately smaller jaw causes the tongue to encroach upon the airway
 - 2. Omega shaped, floppy epiglottis
 - 3. Absent or very delicate dentition
 - B. Trachea
 - 1. Airway is smaller and narrower at all levels
 - 2. Larynx lies more superior
 - Larynx is "funnel shaped" due to narrow, undeveloped cricoid cartilage
 - 4. Narrowest point is at cricoid ring before 10 years of age
 - 5. Further narrowing of the airway by tissue swelling of foreign body results in major increase in airway resistance
 - C. Chest wall
 - 1. Ribs and cartilage are softer
 - 2. Cannot optimally contribute to lung expansion
 - 3. Infants and children tend to depend more heavily on the diaphragm for breathing
- V. Lung/ respiratory volumes
 - A. Total lung volume
 - 1. Adult male, 6 liters
 - 2. Not all inspired air enters alveoli
 - 3. Minor diffusion of O₂ takes place in alveolar ducts and terminal bronchioles
 - B. Tidal volume
 - 1. Volume of gas inhaled or exhaled during a single respiratory cycle
 - 2. 5-7cc/ kg (500 cc normally)
 - C. Dead space air

- 1. Air remaining in air passageways, unavailable for gas exchange (approximately 150 cc)
- 2. Anatomic dead space
 - a. Trachea
 - b. Bronchi
- 3. Physiologic dead space
 - a. Dead space formed by factors like disease or obstruction
 - 1) COPD
 - 2) Atelectasis
- D. Minute volume
 - 1. Amount of gas moved in and out of the respiratory tract per minute
 - 2. Determined by
 - a. Tidal volume dead space volume times respiratory rate
- E. Functional reserve capacity
 - 1. After optimal inspiration: optimum amount of air that can be forced from the lungs in a single forced exhalation
- F. Residual volume
 - 1. Volume of air remaining in lungs at the end of maximal expiration
- G. Alveolar air
 - 1. Air reaching the alveoli for gas exchange (alveolar volume)
 - 2. Approximately 350 cc
- H. Inspiratory reserve
 - 1. Amount of gas that can be inspired in addition to tidal volume
- I. Expiratory reserve
 - 1. Amount of gas that can be expired after a passive (relaxed) expiration
- J. FiO₂
 - 1. Percentage of oxygen in inspired air (increases with supplemental oxygen)
 - a. Commonly documented as a decimal (e.g., $FiO_2 = .85$)
- VI. Ventilation
 - A. Definition movement of air into and out of the lungs
 - B. Phases
 - 1. Inspiration
 - a. Stimulus to breathe from respiratory center
 - b. Impulse transmitted to diaphragm via phrenic nerve
 - 1) Diaphragm "muscle of respiration"
 - 2) Separates thoracic from abdominal cavity
 - c. Diaphragm contracts "flattens"
 - Causes intrapulmonic pressure to fall slightly below atmospheric pressure
 - d. Intercostal muscles contract
 - e. Ribs elevate and expand
 - f. Air is drawn into lungs like a vacuum
 - a. Alveoli Inflate
 - h. O₂/ CO₂ are able to diffuse across membrane
 - 2. Expiration
 - a. Stretch receptors in lungs signal respiratory center via vagus nerve to inhibit inspiration (Hering-Breuer Reflex)
 - b. Natural elasticity (recoil) of the lungs passively expires air

VII. Respiration

- A. Definition
 - 1. Exchange of gases between a living organism and its environment
 - 2. The major gases of respiration are oxygen and carbon dioxide
- B. Types
 - External respiration exchange of gasses between the lungs and the blood cells
 - 2. Internal respiration exchange of gases between the blood cells and tissues
- C. The transportation of oxygen and carbon dioxide in the human body
 - Diffusion passage of solution from area of higher concentration to lower concentration
 - a. O₂/ CO₂ dissolve in water and pass through alveolar membrane by diffusion
 - 2. Oxygen content of blood
 - a. Dissolved O₂ crosses pulmonary capillary membrane and binds to hemoglobin (Hgb) of red blood cell
 - b. Oxygen is carried
 - 1) Bound to hemoglobin
 - 2) Dissolved in plasma
 - c. Approximately 97% of total O₂ is bound to hemoglobin
 - d. O₂ saturation
 - 1) % of hemoglobin saturated
 - 2) Normally greater than 98%
 - 3. Oxygen in the blood
 - a. Bound to hemoglobin
 - 1) SaO₂
 - b. Dissolved in plasma
 - 1) PaO₂
 - 4. Carbon dioxide content of the blood
 - a. CO₂ is a byproduct of cellular work (cellular respiration)
 - b. CO₂ is transported in blood as bicarbonate ion
 - c. About 33% is bound to hemoglobin
 - d. As O₂ crosses into blood, CO₂ diffuses into alveoli
 - e. Carbon dioxide in the blood
 - 1) PaCO₂
 - 5. Diagnostic testing
 - a. Pulse oximetry
 - b. Peak expiratory flow testing
 - c. End-tidal CO₂ monitoring
 - d. Other diagnostic equipment
- VIII. Causes of decreased oxygen concentrations in the blood
 - A. Lower partial pressure of atmospheric O₂
 - B. Lower hemoglobin levels in blood
 - C. Trauma
 - 1. Less surface area for gas exchange
 - a. Pneumothorax
 - b. Hemothorax

- c. Combination of pneumothorax and hemothorax
- 2. Decreased mechanical effort
 - a. Pain
 - b. Traumatic suffocation
 - c. Hypoventilation
- D. Medical
 - 1. Physiological barriers
 - a. Pneumonia
 - b. Pulmonary edema
 - c. COPD
- IX. Carbon dioxide in blood
 - A. Increases
 - 1. Hypoventilation
 - B. Decreases
 - 1. Hyperventilation
- X. The measurement of gases
 - A. Total pressure
 - 1. The combined pressure of all atmospheric gases
 - 2. 100% or 760 torr at sea level
 - B. Partial pressure
 - 1. The pressure exerted by a specific atmospheric gas
 - C. Concentration of gases in the atmosphere
 - 1. Nitrogen 597.0 torr (78.62%)
 - 2. Oxygen 159.0 torr (20.84%)
 - 3. CO₂ 0.3 torr (0.04%)
 - 4. Water 3.7 torr (0.50%)
 - D. Water vapor pressure
 - E. Alveolar gas concentration
 - 1. Nitrogen 569.0 torr (74.9%)
 - 2. Oxygen 104.0 torr (13.7%)
 - 3. CO₂ 40.0 torr (5.2%)
 - 4. Water 47.0 torr (6.2%)
- XI. Respiratory rate
 - A. Definition the number of times a person breathes in one minute
 - B. Neural control
 - 1. Primary control from the medulla and pons
 - 2. Medulla
 - a. Primary involuntary respiratory center
 - b. Connected to respiratory muscles by vagus nerve
 - 3. Pons
 - a. Apneustic center secondary control center if medulla fails to initiate respiration
 - b. Pneumotaxic center controls expiration
 - C. Chemical stimuli
 - 1. Receptors for O₂/ CO₂ balance
 - a. Cerebrospinal fluid pH

- b. Carotid bodies (sinus)
- c. Aortic arch
- 2. Hypoxic drive respiratory stimulus dependent on O₂ rather than CO₂ in the blood
- D. Control of respiration by other factors
 - 1. Body temperature respirations increase with fever
 - 2. Drug and medications may increase or decrease respirations depending on their physiologic action
 - 3. Pain increases respirations
 - 4. Emotion increases respirations
 - 5. Hypoxia increases respirations
 - 6. Acidosis respirations increase as compensatory response to increased CO₂ production
 - 7. Sleep respirations decrease

XII. Pathophysiology

- A. Obstruction
 - 1. Tongue
 - a. Most common airway obstruction
 - b. Snoring respirations
 - c. Corrected with positioning
 - 2. Foreign body
 - a. May cause partial or full obstruction
 - b. Symptoms include
 - 1) Choking
 - 2) Gagging
 - 3) Stridor
 - 4) Dyspnea
 - 5) Aphonia (unable to speak)
 - 6) Dysphonia (difficulty speaking)
 - 3. Laryngeal spasm and edema
 - a. Spasm
 - 1) Spasmotic closure of vocal cords
 - 2) Most frequently caused by
 - a) Trauma from over aggressive technique during intubation
 - b) Immediately upon extubation especially when patient is semiconscious
 - b. Edema
 - 1) Glottic opening becomes extremely narrow or totally obstructed
 - 2) Most frequently caused by
 - a) Epiglottitis (a bacterial infection of the epiglottis)
 - b) Anaphylaxis (severe allergic reaction)
 - c) Relieved by
 - 3) Aggressive ventilation
 - 4) Forceful upward pull of the jaw
 - 5) Muscle relaxants
 - 4. Fractured larynx
 - a. Airway patency dependent upon muscle tone
 - b. Fractured laryngeal tissue

- 1) Increases airway resistance by decreasing airway size through
 - a) Decreasing muscle tone
 - b) Laryngeal edema
 - c) Ventilatory effort
- 5. Aspiration
 - a. Significantly increases mortality
 - 1) Obstructs airway
 - 2) Destroys delicate bronchiolar tissue
 - 3) Introduces pathogens
 - 4) Decreases ability to ventilate

XIII. Airway evaluation

- A. Essential parameters
 - 1. Rate
 - a. Normal resting rate in:
 - 1) Adult
 - 2) Child
 - 3) Infant
 - 2. Regularity
 - a. Steady pattern
 - b. Irregular respiratory patterns are significant until proven otherwise
 - 3. Effort
 - a. Breathing at rest should be effortless
 - b. Effort changes may be subtle in rate or regularity
 - c. Patients often compensate by preferential positioning
 - 1) Upright sniffing
 - 2) Semi-Fowlers
 - 3) Frequently avoid supine
- B. Recognition of airway problems
 - 1. Respiratory distress
 - a. Upper and lower airway obstruction
 - b. Inadequate ventilation
 - c. Impairment of the respiratory muscles
 - d. Impairment of the nervous system
 - 2. Difficulty in rate, regularity, or effort is defined as dyspnea
 - 3. Dyspnea may be result of or result in hypoxia
 - a. Hypoxia lack of oxygen
 - b. Hypoxemia lack of oxygen to tissues
 - c. Anoxia total absence of oxygen
 - 4. Recognition and treatment of dyspnea is crucial to patient survival
 - a. Expert assessment and management is essential
 - 1) The brain can survive only a few minutes of anoxia
 - All therapies fail if airway is inadequate
 - Visual techniques
 - a. Position
 - 1) Tripod positioning
 - 2) Orthopnea
 - b. Rise and fall of chest
 - c. Gasping

- d. Color of skin
- e. Flaring of nares
- f. Pursed lips
- g. Retraction
 - 1) Intercostal
 - 2) Suprasternal notch
 - 3) Supraclavicular fossa
 - 4) Subcostal
- 6. Auscultation techniques
 - a. Air movement at mouth and nose
 - b. Bilateral lung fields equal
- 7. Palpation techniques
 - a. Air movement at mouth and nose
 - b. Chest wall
 - 1) Paradoxical motion
 - 2) Retractions
- 8. Bag-valve-mask
 - a. Resistance or changing compliance with bag-valve-mask ventilations
- 9. Pulsus paradoxus
 - a. Systolic blood pressure drops greater than 10mm Hg with inspiration
 - 1) Change in pulse quality may be detected
 - 2) Seen in COPD, pericardial tamponade
 - 3) Possible increase in intrathoracic pressure
- 10. History
 - a. Evolution
 - 1) Sudden
 - 2) Gradual over time
 - 3) Known cause or "trigger"
 - b. Duration
 - 1) Constant
 - 2) Recurrent
 - c. Ease what makes it better?
 - d. Exacerbate what makes it worse?
 - e. Associate
 - 1) Other symptoms (productive cough, chest pain, fever, etc.)
 - f. Interventions
 - 1) Evaluations/ admissions to hospital
 - 2) Medications (include compliance)
 - 3) Ever intubated
- 11. Modified forms of respiration
 - a. Protective reflexes
 - 1) Cough
 - a) Forceful, spastic exhalation
 - b) Aids in clearing bronchi and bronchioles
 - 2) Sneeze clears nasopharynx
 - 3) Gag reflex spastic pharyngeal and esophageal reflex from stimulus of the posterior pharynx
 - b. Sighing
 - 1) Involuntary deep breath that increases opening of alveoli

- 2) Normally sigh about once per minute
- c. Hiccough intermittent spastic closure of glottis
- 12. Respiratory pattern changes
 - a. Cheyne-Stokes
 - Gradually increasing rate and tidal volume followed by gradual decrease
 - 2) Associated with brain stem insult
 - b. Kussmall's breathing
 - 1) Deep, gasping respirations
 - 2) Common in diabetic coma
 - c. Biot's respirations
 - 1) Irregular pattern, rate, and volume with intermittent periods of apnea
 - 2) Increased intracranial pressure
 - d. Central neurogenic hyperventilation
 - 1) Deep rapid respirations similar to Kussmall's
 - 2) Increased intracranial pressure
 - e. Agonal
 - 1) Slow, shallow, irregular respirations
 - 2) Resulting from brain anoxia
- 13. Inadequate ventilation
 - a. Occurs when body cannot compensate for increased O₂ demand or maintain O₂/ CO₂ balance
 - b. Many causes
 - 1) Infection
 - 2) Trauma
 - 3) Brainstem insult
 - 4) Noxious or hypoxic atmosphere
 - 5) Renal failure
 - c. Multiple symptoms
 - 1) Altered response
 - 2) Respiratory rate changes (up or down)

XIV. Supplemental oxygen therapy

- A. Rationale
 - 1. Enriched O₂ atmosphere increases oxygen to cells
 - 2. Increasing available O₂ increases patient's ability to compensate
 - 3. O₂ delivery method must be reassessed to determine adequacy and efficiency
- B. Oxygen source
 - 1. Compressed gas
 - a. Oxygen compressed in gas form in an aluminum or steel tank
 - b. Common sizes and volumes
 - 1) D 400L
 - 2) E 660L
 - 3) M 3450L
 - c. O₂ delivery measured in liters/ min (LPM)
 - d. Calculating tank life
 - 1) ((Tank pressure (psi) 200) * 0.28) ÷ LPM
 - 2) Volume/ LPM = tank life in minutes

- 2. Liquid oxygen
 - a. O₂ cooled to its aqueous state
 - 1) Converts to gaseous state when warmed
 - b. Advantage
 - 1) Much larger volume of gaseous O₂ can be stored in aqueous state
 - c. Disadvantages
 - 1) Units generally require upright storage
 - 2) Special requirements for large volume storage and cylinder transfer

C. Regulators

- 1. High pressure
 - Attached to cylinder stem delivers cylinder gas under high pressure
 - b. Used to transfer cylinder gas from tank to tank
- 2. Therapy regulators
 - a. Attached to cylinder stem
 - b. 50 psi escape pressure is "stepped down" through regulator mechanism
 - c. Subsequent delivery to patient is adjustable low pressure

D. Delivery devices

- 1. Nasal cannula
 - a. Nasally placed O₂ catheter for oxygen enrichment
 - b. Optimal delivery: 40% at 6 L/ min
 - c. Indications
 - 1) Low to moderate O₂ enrichment
 - 2) Long term O₂ maintenance therapy
 - d. Contraindications
 - 1) Poor respiratory effort
 - 2) Severe hypoxia
 - 3) Apnea
 - 4) Mouth breathing
 - e. Advantage
 - 1) Well tolerated
 - f. Disadvantage
 - 1) Does not deliver high volume/ high concentration
- 2. Simple face mask
 - a. Full airway enclosure with open side ports
 - 1) Room air is drawn through side ports on inspiration
 - 2) Dilutes O₂ concentration
 - b. Indications
 - 1) Delivery of moderate to high O₂ concentrations
 - 2) Range 40-60% at 10 L/ min
 - c. Advantage
 - 1) Higher O₂ concentrations
 - d. Disadvantage
 - 1) Delivery of volumes beyond 10 L/ min does not enhance O₂ concentration
 - e. Special considerations
 - 1) Mask leak around face decreases O₂ concentration
- 3. Partial rebreather
 - a. Mask vent ports covered by one-way disc
 - 1) Residual expired air mixed in mask and rebreathed

- 2) Room air not entrained with inspiration
- b. Indications
- c. Contraindications
 - 1) Apnea
 - 2) Poor respiratory effort
- d. Advantages
 - 1) Inspired gas not mixed with room air
 - a) Higher O₂ concentrations attainable
 - 2) Disadvantages
 - a) Delivery of volumes beyond 10 L/ min does not enhance O₂ concentration
- e. Special considerations
 - 1) Mask leak around face decreases O2 concentration
- 4. Non-rebreather mask
 - a. Mask side ports covered by one-way disc
 - b. Reservoir bag attached
 - c. Range: 80-95+% at 15 L/ min
 - d. Indication
 - 1) Delivery of highest O₂ concentration
 - e. Contraindications
 - 1) Apnea
 - 2) Poor respiratory effort
 - f. Advantages
 - 1) Highest O₂ concentration
 - 2) Delivers high volume/ high O₂ enrichment
 - 3) Patient inhales enriched O₂ from reservoir bag rather than residual air
 - g. Disadvantages
- 5. Venturi mask
 - a. Mask with interchangeable adapters
 - 1) Adapters have port holes that entrain room air as O₂ passes
 - 2) Patient receives a highly specific concentration of O₂
 - 3) Air is entrained by venturi principle
- 6. Small volume nebulizer
 - a. Delivers aerosolized medication
 - b. O₂ enters an aerosol chamber containing 3-5 ccs of fluid
 - c. Pressurized O₂ mists fluid
- E. Oxygen humidifiers
 - 1. Sterile water reservoir for humidifying O₂
 - 2. Good for long term O₂ administration
 - 3. Desirable for croup/ epiglottitis/ bronchiolitis
- F. Tracheostomy, stoma, and tracheostomy tubes
 - 1. Tracheostomy
 - a. Surgical opening into trachea
 - 1) Done in operating room under controlled conditions
 - 2) A stoma located just superior to the suprasternal notch
 - 2. Stoma
 - a. Resultant orifice connecting trachea to outside air
 - b. Patient now breathes through this surgical opening
 - 3. Tracheostomy tube

- a. Plastic tube placed within tracheostomy site
- b. 15 mm connector for ventilator acceptance

XV. Ventilation

- A. Mouth-to-mouth
 - 1. Most basic form of ventilation
 - Indication
 - a. Apnea from any mechanism when other ventilation devices are not available
 - Contraindications
 - a. Awake patients
 - b. Communicable disease risk limitations
 - 4. Advantages
 - a. No special equipment required
 - b. Delivers excellent tidal volume
 - c. Delivers adequate oxygen
 - 5. Disadvantages
 - a. Psychological barriers from
 - 1) Sanitary issues
 - 2) Communicable disease issues
 - a) Direct blood/ body fluid contact
 - b) Unknown communicable disease risks at time of event
 - 6. Complications
 - a. Hyperinflation of patient's lungs
 - b. Gastric distension
 - c. Blood/ body fluid contact manifestation
 - d. Hyperventilation of rescuer
- B. Mouth-to-nose
 - 1. Ventilating through nose rather than mouth
 - 2. Indication
 - a. Apnea from any mechanism
 - 3. Contraindication
 - a. Awake patients
 - 4. Advantage
 - a. No special equipment required
 - 5. Disadvantages
 - a. Direct blood/ body fluid contact
 - b. Psychological limitations of rescuer
 - 6. Complications
 - a. Hyperinflation of patient's lungs
 - b. Gastric distension
 - c. Blood/ body fluid manifestation
 - d. Hyperventilation of rescuer
- C. Mouth-to-mask
 - 1. Adjunct to mouth-to-mouth ventilation
 - 2. Indication
 - 3. Apnea from any mechanism
 - 4. Contraindication

- a. Awake patients
- 5. Advantages
 - a. Physical barrier between rescuer and patient blood/body fluids
 - b. One-way valve to prevent blood/ body fluid splash to rescuer
 - c. May be easier to obtain face seal
- 6. Disadvantage
 - a. Useful only if readily available
- 7. Complications
 - a. Hyperinflation of patient's lungs
 - b. Hyperventilation of rescuer
 - c. Gastric distention
- 8. Method for use
 - a. Position head by appropriate method
 - b. Position and seal mask over mouth and nose
 - c. Ventilate as appropriate
- D. One person bag-valve-mask
 - Fixed volume self inflating bag can deliver adequate tidal volumes and O₂ enrichment
 - 2. Indications
 - a. Apnea from any mechanism
 - b. Unsatisfactory respiratory effort
 - 3. Contraindication
 - a. Awake, intolerant patients
 - 4. Advantages
 - a. Excellent blood/ body fluid barrier
 - b. Good tidal volumes
 - c. Oxygen enrichment
 - d. Rescuer can ventilate for extended periods without fatigue
 - 5. Disadvantages
 - a. Difficult skill to master
 - b. Mask seal may be difficult to obtain and maintain
 - c. Tidal volume delivered is dependent on mask seal integrity
 - 6. Complications
 - a. Inadequate tidal volume delivery with
 - 1) Poor technique
 - 2) Poor mask seal
 - 3) Gastric distention
 - 7. Method for use
 - a. Position appropriately
 - b. Choose proper mask size seats from bridge of nose to chin
 - c. Position, spread/ mold/ seal mask
 - d. Hold mask in place
 - e. Squeeze bag completely over 1.5 to 2 seconds for adults
 - f. Avoid overinflation
 - g. Reinflate completely over several seconds
 - 8. Special considerations
 - a. Medical
 - 1) Observe for
 - a) Gastric distension

- b) Changes in compliance of bag with ventilation
- c) Improvement or deterioration of ventilation status (i.e., color change, responsiveness, air leak around mask)
- b. Trauma
 - 1) Very difficult to perform with cervical spine immobilization in place
- E. Two person bag-valve-mask ventilation method
 - Most efficient method
 - 2. Indications
 - a. Bag-valve-mask ventilation on any patient
 - 1) Especially useful for cervical spine-immobilized patients
 - 2) Difficulty obtaining or maintaining adequate mask seal
 - 3. Contraindications
 - a. Awake, intolerant patients
 - 4. Advantages
 - a. Superior mask seal
 - b. Superior volume delivery
 - Disadvantages
 - a. Requires extra personnel
 - 6. Complications
 - a. Hyperinflation of patient's lungs
 - b. Gastric distension
 - 7. Method for use
 - a. First rescuer maintains mask seal by appropriate method
 - b. Second rescuer squeezes bag
 - 8. Special considerations
 - a. Observe chest movement
 - b. Avoid overinflation
 - c. Monitor lung compliance with ventilations
- F. Three person bag-valve-mask ventilation
 - 1. Indications
 - a. Bag-valve-mask ventilation on any patient
 - 1) Especially useful for cervical spine-immobilized patients
 - 2) Difficulty obtaining or maintaining adequate mask seal
 - 2. Contraindications
 - a. Awake, intolerant patients
 - 3. Advantages
 - a. Superior mask seal
 - b. Superior volume density
 - 4. Disadvantages
 - a. Requires extra personnel
 - b. "Crowded" around airway
 - 5. Complications
 - a. Hyperinflation of patient's lungs
 - b. Gastric distension
 - 6. Method for use
 - a. First rescuer maintains mask seal by appropriate method
 - b. Second rescuer holds mask in place
 - c. Third rescuer squeezes bag and monitors compliance
 - 7. Special considerations

- a. Avoid overinflation
- b. Monitor lung compliance with ventilations
- G. Flow-restricted, oxygen-powered ventilation devices
 - 1. The valve opening pressure at the cardiac sphincter is approx 30 cm H₂O
 - 2. These devices operate at or below 30 cm H₂O to prevent gastric distension
 - 3. Indications
 - a. Delivery of high volume/ high concentration of O₂ (1 L/ sec)
 - b. Awake compliant patients
 - c. Unconscious patient with caution
 - 4. Contraindications
 - a. Noncompliant patients
 - b. Poor tidal volume
 - c. Small children
 - Advantages
 - a. Self administered
 - b. Delivers high volume/ high concentration O₂
 - c. O₂ delivered in response to inspiratory effort (no O₂ wasting)
 - d. O₂ volume delivery is regulated by inspiratory effort minimizing overinflation risk
 - e. O₂ volume delivery is also restricted to less than 30 cm H₂O
 - 6. Disadvantages
 - a. Cannot monitor lung compliance
 - b. Requires O₂ source
 - 7. Complications
 - a. Gastric distension
 - b. Barotrauma
 - 8. Method
 - a. Mask is held manually in place
 - b. Negative pressure upon inspiration triggers O₂ delivery or medic triggers release button
 - c. Patient is monitored for adequate tidal volume and oxygenation
- H. Automatic transport ventilators
 - Volume/ rate controlled
 - 2. Indications
 - a. Extended ventilation of intubated patients
 - b. In situations in which a BVM is used
 - c. Can be used during CPR
 - Contraindications
 - a. Awake patients
 - b. Obstructed airway
 - c. Increased airway resistance
 - 1) Pneumothorax (after needle decompression)
 - 2) Asthma
 - 3) Pulmonary edema
 - 4. Advantages
 - a. Frees personnel to perform other tasks
 - b. Lightweight
 - c. Portable
 - d. Durable

- e. Mechanically simple
- f. Adjustable tidal volume
- g. Adjustable rate
- h. Adapts to portable O2 tank
- 5. Disadvantages
 - a. Cannot detect tube displacement
 - b. Does not detect increasing airway resistance
 - c. Difficult to secure
 - d. Dependent on O₂ tank pressure
- I. Cricoid pressure Sellick maneuver
 - 1. Pressure on cricoid ring
 - 2. Occludes esophagus
 - 3. Facilitates intubation by moving the larynx posteriorly
 - 4. Helps to prevent passive emesis
 - 5. Can help minimize gastric distension during bag-valve-mask ventilation
 - 6. Indications
 - a. Vomiting is imminent or occurring
 - b. Patient cannot protect own airway
 - 7. Contraindication
 - a. Use with caution in cervical spine injury
 - 8. Advantages
 - a. Noninvasive
 - b. Protects from aspiration as long as pressure is maintained
 - 9. Disadvantages
 - a. May have extreme emesis if pressure is removed
 - b. Second rescuer required for bag-valve-mask ventilation
 - c. May further compromise injured cervical spine
 - 10. Complications
 - a. Laryngeal trauma with excessive force
 - b. Esophageal rupture from unrelieved high gastric pressures
 - c. Excessive pressure may obstruct the trachea in small children
 - 11. Method
 - a. Locate the anterior aspect of the cricoid ring
 - b. Apply firm, posterior pressure
 - c. Maintain pressure until the airway is secured with an endotracheal tube
- J. Artificial ventilation of the pediatric patient
 - 1. Flat nasal bridge makes achieving mask seal more difficult
 - 2. Compressing mask against face to improve mask seal results in obstruction
 - 3. Mask seal best achieved with jaw displacement (two person bag-valve-mask)
 - 4. Bag-valve-mask ventilation
 - a. Bag size
 - Full-term neonates and infants minimum of 450 ml tidal volume (pediatric BVM)
 - 2) Children up to eight years of age pediatric BVM preferred but adultsized BVM (1500 ml) may be utilized
 - 3) Children over eight years of age require adult-sized BVM for adequate ventilation
 - 4) Proper mask fit
 - 5) Length based resuscitation tape

- 6) Bridge of nose to cleft of chin
- b. Proper mask position and seal (EC-clamp)
 - 1) Place mask over mouth and nose; avoid compressing the eyes
 - 2) Using one hand, place thumb on mask at apex and index finger on mask at chin (C-grip)
 - 3) With gently pressure, push down on mask to establish adequate seal
 - 4) Maintain airway by lifting bony prominence of chin with remaining fingers forming an "E"; avoid placing pressure on the soft area under chin
 - 5) May use one or two rescuer technique
- c. Ventilate according to current standards
- d. Obtain chest rise with each breath
 - Begin ventilation and say "squeeze"; provide just enough volume to initiate chest rise; DO NOT OVERVENTILATE
- e. Allow adequate time for exhalation
 - 1) Begin releasing the bag and say "release, release"
- f. Continue ventilations using "squeeze, release, release" method
- g. Assess BVM ventilation
 - 1) Look for adequate chest rise
 - 2) Listen for lung sounds at third intercostal space, midaxillary line
 - 3) Assess for improvement in color and/ or heart rate
- h. Apply cricoid pressure to minimize gastric inflation and passive regurgitation
 - 1) Locate cricoid ring by palpating the trachea for a prominent horizontal band inferior to the thyroid cartilage and cricothyroid membrane
 - 2) Apply gentle downward pressure utilizing one fingertip in infants and the thumb and index finger in children
 - Avoid excessive pressure as it may produce tracheal compression and obstruction in infants
- K. Ventilation of stoma patients
 - 1. Mouth-to-stoma
 - a. Locate stoma site and expose
 - b. Pocket mask to stoma preferred
 - 1) Seal around stoma site, check for adequate ventilation
 - 2) Seal mouth and nose if air leak evident
 - 2. Bag-valve-mask to stoma
 - a. Locate stoma site and expose
 - b. Seal around stoma site, check for adequate ventilation
 - Seal around mouth and nose if air leak evident

XVI. Airway obstructions

- A. Causes
 - 1. Tongue
 - 2. Foreign body
 - 3. Laryngeal spasm
 - 4. Laryngeal edema
 - 5. Trauma
- B. Classifications/ assessment
 - 1. Complete obstruction

- 2. Partial obstruction
 - a. With good air exchange
 - b. With poor air exchange
- C. Management
 - 1. Heimlich maneuver
 - 2. Finger sweep
 - 3. Chest thrusts
 - 4. Suctioning
 - 5. Direct laryngoscopy for the removal of foreign body in airway obstruction
 - a. If unable to ventilate and BLS methods fail
 - 1) Patient is unconscious
 - a) Insert laryngoscope blade into patient's mouth
 - b) If foreign body is visualized
 - i) Carefully and deliberately remove foreign body with Magill forceps
 - 6. Intubation

XVII. Suctioning

- A. Suction devices
 - 1. Hand-powered suction devices
 - a. Advantages
 - 1) Lightweight
 - 2) Portable
 - 3) Mechanically simple
 - 4) Inexpensive
 - b. Disadvantages
 - 1) Limited volume
 - 2) Manually powered
 - 3) Fluid contact components not disposable
 - 2. Oxygen-powered portable suction devices
 - a. Advantages
 - 1) Lightweight
 - 2) Small in size
 - b. Disadvantages
 - 1) Limited suctioning power
 - 2) Uses a lot of oxygen for limited suctioning power
 - 3. Battery-operated portable suction devices
 - a. Advantages
 - 1) Lightweight
 - 2) Portable
 - 3) Excellent suction power
 - 4) May "field" troubleshoot most problems
 - b. Disadvantages
 - 1) More complicated mechanics
 - 2) May lose battery integrity over time
 - 3) Some fluid contact components not disposable
 - 4. Mounted vacuum-powered suction devices
 - a. Advantages
 - 1) Extremely strong vacuum

- 2) Adjustable vacuum power
- 3) Fluid contact components disposable
- b. Disadvantages
 - 1) Non-portable
 - 2) Cannot "field service" or substitute power source
- B. Suctioning catheters
 - 1. Hard or rigid catheters
 - a. "Yankauer" or "tonsil tip"
 - b. Suction large volumes of fluid rapidly
 - c. Standard size
 - d. Various sizes
 - 2. Soft catheters
 - a. Can be placed in oropharynx, nasopharynx, or down endotracheal tube
 - b. Various sizes
 - c. Smaller inside diameter than hard tip catheters
 - d. Suction tubing without catheter (facilitates suctioning of large debris)
- C. Suctioning the upper airway
 - 1. Prevention of aspiration critical
 - a. Mortality increases significantly if aspiration occurs
 - b. Preoxygenate if possible
 - c. Hyperoxygenate after suctioning
 - 2. Description
 - a. Soft tip catheters must be prelubricated
 - b. Place catheter
 - c. Suction during extraction of catheter
 - d. Suction to clear the airway
 - e. Reevaluate patency of the airway
 - f. Ventilate and oxygenate
- D. Tracheobronchial suctioning
 - 1. Use sterile technique, if possible
 - 2. Preoxygenation essential
 - 3. Description
 - a. Pre-lubricate soft tip catheter
 - b. Hyperoxygenate
 - May be necessary to inject 3 to 5 cc's of sterile water down endotracheal tube to loosen secretions
 - c. Gently insert catheter until resistance is felt
 - d. Suction upon extraction of catheter
 - e. Do not exceed 15 seconds
 - f. Ventilate and oxygenate
- E. Gastric distention
 - 1. Air becomes trapped in the stomach
 - 2. Very common when ventilating non-intubated patients
 - 3. Stomach diameter increases
 - 4. Pushes against diaphragm
 - 5. Interferes with lung expansion
 - 6. Abdomen becomes increasingly distended
 - 7. Resistance to bag-valve-mask ventilation
 - 8. Management

- a. Non-invasive
 - 1) May be reduced by increasing bag-valve-mask ventilation time
 - a) Adults 1.5 to 2 seconds
 - b) Pediatrics 1 to 1.5 seconds
 - 2) Prepare for large volume suction
 - 3) Position patient left lateral
 - 4) Slowly apply pressure to epigastric region
 - 5) Suction as necessary
- b. Gastric tubes
 - Tube placed in the stomach for gastric decompression and/ or emesis control
 - 2) Nasogastric decompression
 - a) Indications
 - i) Threat of aspiration
 - ii) Need for lavage
 - b) Contraindications
 - i) Extreme caution in esophageal disease or esophageal trauma
 - ii) Facial trauma (caution)
 - iii) Esophageal obstruction
 - c) Advantages
 - i) Tolerated by awake patients
 - ii) Does not interfere with intubation
 - iii) Mitigates recurrent gastric distension
 - iv) Mitigates nausea
 - v) Patient can still talk
 - d) Disadvantages
 - i) Uncomfortable for patient
 - ii) May cause patient to vomit during placement even if gag is suppressed
 - iii) Interferes with BVM seal
 - e) Complications
 - i) Nasal, esophageal or gastric trauma from poor technique
 - ii) Endotracheal placement
 - iii) Supragastric placement
 - iv) Tube obstruction
 - f) Method
 - i) Prepare patient
 - a. Head neutral
 - b. Oxygenate
 - c. Suppress gag with topical anesthetic or IV lidocaine
 - d. Anesthetize and dilate nares
 - ii) Lubricate tube
 - iii) Advance gently along nasal floor
 - a. Encourage patient to swallow or drink to facilitate passage
 - iv) Advance into stomach
 - v) Confirm placement
 - a. Auscultate while injecting 30-50 cc's of air
 - b. Note gastric contents through tube
 - c. No reflux around tube

- vi) Secure in place
- 3) Orogastric decompression
 - a) Indications
 - i) Same parameters as NG
 - ii) Generally preferred for unconscious patients
 - b) Contraindication
 - i) Same parameters as NG
 - c) Advantages
 - i) May use larger tubes
 - ii) May lavage more aggressively
 - iii) Safe to pass in facial fracture
 - iv) Avoids nasopharynx
 - d) Disadvantage
 - i) May interfere with visualization during intubation
 - e) Complications
 - i) Same as NG
 - ii) Patient may bite tube
 - f) Method
 - i) Neutral or flexed head position
 - ii) Introduce tube down midline
 - iii) Procedure same as NG

XVIII. Airway management

- A. Manual maneuvers
 - 1. Head-tilt/ chin-lift maneuver
 - a. Technique
 - 1) Tilt head back
 - 2) Lift chin forward
 - 3) Open mouth
 - b. Indications
 - 1) Unresponsive patients who
 - a) Do not have mechanism for c-spine injury
 - b) Unable to protect their own airway
 - c. Contraindications
 - 1) Awake patients
 - 2) Possible c-spine injury
 - d. Advantages
 - 1) No equipment required
 - 2) Simple
 - 3) Safe
 - 4) Non-invasive
 - e. Disadvantages
 - 1) Head tilt hazardous to c-spine injured patients
 - 2) Does not protect from aspiration
 - 2. Jaw-thrust without head-tilt maneuver
 - a. Technique
 - 1) Head is maintained neutral
 - 2) Jaw is displaced forward
 - 3) Lift by grasping under chin and behind teeth

- 4) Mouth opened
- b. Indications
 - 1) Patients who are
 - a) Unresponsive
 - b) Unable to protect their own airway
 - c) May have c-spine injury
- c. Contraindications
 - 1) Responsive patients
 - 2) Resistance to opening mouth
- d. Advantages
 - 1) May be used in c-spine injury
 - 2) May be performed with cervical collar in place
 - 3) Does not require special equipment
- e. Disadvantages
 - 1) Cannot maintain if patient becomes responsive or combative
 - 2) Difficult to maintain for extended period
 - 3) Very difficult to use in conjunction with bag-valve-mask ventilation
 - 4) Thumb must remain in patient's mouth in order to maintain displacement
 - 5) Separate rescuer required to perform bag-valve-mask ventilation
 - 6) Does not protect against aspiration
- 3. Modified jaw-thrust maneuver
 - a. Technique
 - 1) Head maintained neutral
 - 2) Jaw is displaced forward at mandibular angle
 - b. Indications
 - 1) Unresponsive
 - 2) Cervical spine injury
 - 3) Unable to protect own airway
 - 4) Resistance to opening mouth
 - c. Contraindication
 - 1) Awake patients
 - d. Advantages
 - 1) Non-invasive
 - 2) Requires no special equipment
 - 3) May be used with cervical collar in place
 - e. Disadvantages
 - 1) Difficult to maintain
 - 2) Requires second rescuer for bag-valve-mask ventilation
 - 3) Does not protect against aspiration
- B. Nasal airway
 - 1. Soft rubber with beveled tip
 - a. Distal tip rests in hypopharynx
 - b. For adults, length measured from nostril to earlobe
 - c. Diameter roughly equal to patient's little finger
 - 2. Indications
 - a. Unconscious patients
 - b. Altered response patients with suppressed gag reflex
 - 3. Contraindications

- a. Patient intolerance
- b. Caution in presence of facial fracture or skull fracture
- 4. Advantages
 - a. Can be suctioned through
 - b. Provides patent airway
 - c. Can be tolerated by awake patients
 - d. Can be safely placed "blindly"
 - e. Does not require mouth to be open
- 5. Disadvantages
 - a. Poor technique may result in severe bleeding
 - 1) Resulting epistaxis may be extremely difficult to control
 - b. Does not protect from aspiration
- 6. Placement
 - a. Determine correct length and diameter
 - b. Lubricate nasal airway
 - c. With bevel towards septum, insert gently along the nasal floor parallel to the mouth
 - d. Do not force
 - e. Measurement from corner of the mouth to the jaw angle rather than tip of the ear
 - f. Too long airway causes airway obstruction
- C. Oral airway
 - 1. Hard plastic airway designed to prevent the tongue from obstructing glottis
 - 2. Indications
 - a. Unconscious patients
 - b. Absent gag reflex
 - 3. Contraindication
 - a. Conscious patients
 - 4. Advantages
 - a. Non-invasive
 - b. Easily placed
 - c. Prevents blockage of glottis by tongue
 - Disadvantages
 - a. Does not prevent aspiration
 - b. Unexpected gag may produce vomiting
 - 6. Complications
 - a. Unexpected gag may produce vomiting
 - b. Pharyngeal or dental trauma with poor technique
 - 7. Placement
 - a. Open mouth
 - b. Remove visible obstructions
 - c. Place with distal tip toward glottis using tongue depressor as adjunct
 - d. Alternate method place airway with distal tip toward palate and rotate into place
 - 8. Pediatrics
 - a. Place with tongue depressor
 - b. Place with tip toward tongue, not palate
- D. Endotracheal tube

- 1. Tube passed into the trachea in order to provide externally-controlled breathing through a BVM or ventilator
 - a. Sizes
 - 1) 2.5-9.0 mm inside diameter (id)
 - 2) Length 12-32 cm
 - b. Types
 - 1) Cuffed 5.0-9.0
 - a) Proximal end 15 mm adapter
 - b) Proximal end inflation port with pilot balloon
 - c) Cm markings along length
 - d) Distal end beveled tip
 - e) Distal end balloon cuff
 - 2) Uncuffed 2.5-4.5
 - a) Proximal end 15 mm adapter
 - b) Distal end bevel tip
 - c) Distal end depth markings
 - d) No balloon cuff or pilot balloon
- 2. Indications
 - a. Present or impending respiratory failure
 - b. Apnea
 - c. Failure to protect own airway
- 3. Contraindications
- 4. Advantages
 - a. Provides a secure airway
 - b. Protects against aspiration
 - c. Route for medication
- 5. Disadvantages
 - a. Special equipment needed
 - b. Bypasses physiologic function of upper airway
 - 1) Warming
 - 2) Filtering
 - 3) Humidifying
- 6. Complications
 - a. Bleeding
 - b. Laryngeal swelling
 - c. Laryngospasm
 - d. Vocal cord damage
 - e. Mucosal necrosis
 - f. Barotrauma
- 7. Orotracheal intubation by direct laryngoscopy
 - a. Directly visualizing the passage of an ET tube into the trachea
 - b. Indications
 - 1) Apnea
 - 2) Hypoxia
 - 3) Poor respiratory effort
 - 4) Suppression or absence of gag reflex
 - c. Contraindications
 - 1) Caution in unsuppressed gag reflex
 - d. Advantages

- 1) Direct visualization of anatomy and tube placement
- 2) Ideal method for confirming placement
- 3) May be performed in breathing and apneic patients
- e. Disadvantages
 - 1) Requires special equipment
- f. Complications
 - 1) Dental trauma
 - 2) Laryngeal trauma
 - 3) Misplacement
 - a) Right mainstem
 - b) Esophageal
- g. Equipment
 - 1) Laryngoscope
 - a) Device used to visualize glottis during endotracheal intubation
 - b) Battery pack/ handle with interchangeable blades
 - c) Blade types
 - i) Straight (Miller) lifts epiglottis
 - ii) Curved (Macintosh) lifts epiglottis by fitting into vallecula
 - 2) 10 cc syringe to inflate/ deflate balloon cuff
 - 3) Water soluble lubricant to lubricate endotracheal tube, promote ease of passage, and decrease trauma
 - 4) Stylet semi-rigid wire for molding and maintaining tube shape
 - 5) Securing device
 - a) Tape
 - b) Commercially available endotracheal tube holder
 - 6) Suction
 - 7) Body substance precautions
 - a) Gloves
 - b) Mask
 - c) Eyewear or faceshield
- h. Method
 - 1) Position used when the potential for c-spine injury does not exist
 - a) Sniffing position
 - i) Optimal hyperextension of head with elevation of occiput
 - ii) Brings the axis of the mouth, the pharynx, and the trachea into alignment
 - 2) When potential for c-spine injury exists head is held firmly in neutral position during intubation
 - 3) Ensure optimal oxygenation and ventilation with 100% O₂
 - 4) Ensure all equipment is prepared
 - a) Lubricated tube with stylet in place
 - i) Best position is "hockey stick"
 - ii) Bend directly behind balloon cuff
 - b) Working laryngoscope
 - i) Blade locks securely in place
 - ii) Light is bright and steady (unpleasant to look at)
 - c) Test cuff by inflating and then deflating
 - 5) Ideally, hyperoxygenate patient for 30 seconds to 1 minute
 - 6) Insert laryngoscope blade

- a) Gently insert to hypopharynx
- b) Lift tongue and jaw with firm, steady pressure
 - i) Avoid fulcrum against teeth
- 7) Identify vocal cords
- 8) Gently pass ET tube until observe passage of balloon cuff past cords
- 9) Remove stylet
- 10) Inflate balloon cuff
- 11) Ventilate patient
- 12) Confirm placement with multiple methods
- 13) Reconfirm placement with major patient movement or head movement

8. Confirming placement

- a. Methods
 - 1) Direct re-visualization
 - a) Re-visualize glottis
 - b) Note tube depth
 - i) Average tube depth in males is 22 cm at the teeth
 - ii) Average tube depth in women is 21 cm at the teeth
 - 2) Note condensation in the tube
 - 3) Auscultation
 - a) Epigastric area
 - i) Air entry into stomach indicates esophageal placement
 - b) Bilateral bases
 - i) Equal volume and expansion
 - c) Apices
 - i) Equal volume
 - d) Unequal or absent breath sounds indicate
 - i) Esophageal placement
 - ii) Right mainstem placement
 - iii) Pneumothorax
 - iv) Bronchial obstruction
 - 4) Palpation of balloon cuff at sternal notch by compressing pilot balloon
 - 5) Pulse oximetry
 - 6) Expired CO₂
 - a) Measures presence of CO₂ in expired air
 - i) Colormetric
 - ii) Digital
 - iii) Digital/waveform
 - 7) Bag-valve-mask ventilation compliance
 - a) Increased resistance to BVM compliance may indicate
 - i) Gastric distension
 - ii) Esophageal placement
 - iii) Tension pneumothorax
- b. Evidence of a misplaced tube regardless when it was last checked must be reconfirmed
- c. Confirmation must be performed
 - 1) By multiple methods
 - 2) Immediately after tube placement
 - 3) After any major move

- 4) After manipulation of neck (manipulation of neck may displace tube up to 5 cm)
- 9. Corrective measures
 - a. Esophageal placement
 - 1) Ready to vigorously suction as needed
 - 2) Likelihood of emesis is increased especially if gastric distension is present
 - 3) Ideally, preoxygenate prior to reintubation
 - 4) Misplaced tube may be removed after proper tracheal placement is confirmed or it may be removed beforehand provided diligent and vigorous airway suctioning is ready
 - b. Right mainstem placement
 - 1) Loosen or remove securing device
 - 2) Deflate balloon cuff
 - 3) While ventilation continues, SLOWLY retract tube while simultaneously listening for breath sounds over left chest
 - 4) STOP as soon as breath sounds are heard in left chest
 - 5) Note tube depth
 - 6) Reinflate balloon cuff
 - 7) Secure tube
- 10. Securing the tube
 - a. As critical as the intubation itself
 - b. Multiple methods and products available
 - c. Adjuncts include
 - 1) Securing to maxilla rather than mandible
 - 2) Tincture of benzoin to facilitate tape adhesion
- 11. Field extubation
 - a. Generally, the only reason to field extubate is the patient is unreasonably intolerant of the tube
 - Awake patients are at high risk of laryngospasm immediately following extubation
 - c. There may be a problem re-inducting and re-intubating a laryngospastic patient
 - d. Indications
 - 1) Able to protect and maintain airway
 - 2) Risks for need to reintubate significantly reduced
 - 3) Must not be sedated
 - e. Contraindication
 - 1) Any risk of recurrence of respiratory failure
 - f. Complications
 - Highest risk of recurrence of laryngospasm is immediately post extubation
 - 2) Respiratory distress or failure may return necessitating re-intubation
 - a. Method
 - 1) Ensure oxygenation
 - 2) Intubation equipment and suction immediately available
 - 3) Confirm patient responsiveness
 - 4) Suction oropharynx
 - 5) Deflate cuff

- 6) Remove upon cough or expiration
- h. Special considerations
 - 1) Need for field extubation is extremely rare
 - 2) Intolerance of ET tube evidenced by gag reflex should be addressed by increasing sedation rather than removing tube
- 12. Pediatric endotracheal intubation
 - a. Laryngoscope and size appropriate blades
 - 1) Straight blades are preferred
 - 2) General guidelines
 - a) Premature infant 0 straight
 - b) Full-term infant to one year of age 1 straight
 - c) Two years of age to adolescent 2 straight
 - d) Adolescent and above 3 straight or curved
 - b. Appropriate size endotracheal tube
 - 1) Formula = $(16 + age in years) \div 4$
 - 2) Anatomical clues
 - 3) General guidelines
 - a) Premature infant 2.5 to 3.0 uncuffed
 - b) Full-term infant 3.0 to 3.5 uncuffed
 - c) Infant to one year of age 3.5 to 4.0 uncuffed
 - d) Toddler 4.0 to 5.0 uncuffed
 - e) Preschool 5.0 to 5.5 uncuffed
 - f) School age 5.5 to 6.5 uncuffed
 - g) Adolescent 7.0 to 8.0 cuffed
 - 4) Depth of insertion
 - a) 2-3 cm below the vocal cords
 - i) Uncuffed place the black glottic marker of the tube at the level of the vocal cords
 - ii) Cuffed insert until the cuff is just below the vocal cords
 - b) Formula = (3 x inside diameter 1)
 - c) General guidelines
 - i) Premature infant 8 cm
 - ii) Full-term infant 8 to 9.5 cm
 - iii) Infant to one year of age 9.5 to 11 cm
 - iv) Toddler 11 to 12.5 cm
 - v) Preschool 12.5 to 14 cm
 - vi) School age 14 to 20 cm
 - vii) Adolescent 20 to 23 cm
 - 5) Appropriate sized endotracheal tube stylet
 - c. Endotracheal tube securing device
 - 1) Tape
 - 2) Commercial device
 - d. Technique
 - 1) Separate parent/ guardian and patient
 - 2) Manually open airway
 - 3) Insert appropriate airway adjunct if needed
 - 4) Ventilate patient with 100% oxygen via age appropriate sized bag
 - 5) Place the patient's head in the sniffing position

- 6) Pre-oxygenate the patient with 100% oxygen a minimum of 30 seconds
- 7) Prepare all equipment
 - a) Lubricate endotracheal tube with sterile water/ saline or watersoluble gel
 - b) Lubricate stylet if utilized
- 8) Insert the laryngoscope to the right side of the mouth and sweep the tongue to the left side
- 9) Lift tongue with firm, steady pressure
 - a) Avoid fulcrum against teeth or gums
- 10) Use the tip of the blade to lift epiglottis
- 11) Identify the vocal cords
- 12) Introduce the endotracheal tube to the right side of the mouth
- 13) Pass the tube through the vocal cords to about 2-3 cm below the vocal cords
- 14) Confirm proper tube placement
 - a) Observe for symmetrical chest expansion
 - b) Auscultate for equal breath sounds over each lateral chest wall high in the axillae
 - c) Absence of breath sounds over the abdomen
 - d) Improved heart rate and color
 - e) If available, end-tidal carbon dioxide detector
- 15) Secure tube noting placement of distance marker at teeth/ gums
- 16) Reconfirm tube placement

E. Multi-lumen airways

- 1. Pharyngo-tracheal lumen airway (PTL)
 - a. An endotracheal tube encased in a large pharyngeal tube
 - b. Designed to be passed blindly
 - c. Dual ventilation ports provide means to ventilate regardless of whether the ET tube is placed in the esophagus or the trachea
 - d. Indication
 - Alternative airway control when conventional intubation procedures are not available or successful
 - e. Advantages
 - 1) Can ventilate with tracheal or esophageal placement
 - 2) No facemask to seal
 - 3) No special equipment
 - 4) Does not require sniffing position
 - f. Disadvantages
 - 1) Cannot be used in awake patients
 - 2) Adults only
 - 3) Pharyngeal balloon mitigates but does not eliminate aspiration risk
 - 4) Can only be passed orally
 - 5) Extremely difficult to intubate around
 - g. Method
 - 1) Head neutral
 - 2) Pre-intubation precautions
 - 3) Insert at the midline using jaw-lift
 - 4) Ventilate through pharyngeal tube (green) first

- a) Chest rise indicates ET tube is in esophagus
 - i) Inflate pharyngeal balloon and ventilate
- b) No chest rise indicates ET tube in trachea
 - i) Inflate ET tube balloon cuff
 - ii) Ventilate through ET tube
- h. Complications
 - 1) Pharyngeal or esophageal trauma from poor technique
 - 2) Unrecognized displacement of ET tube into esophagus
 - 3) Displacement of pharyngeal balloon
- i. Special considerations
 - 1) Good assessment skills are essential to properly confirm placement
 - 2) Mis-identification of placement has been reported
 - 3) Reinforce multiple confirmation of placement techniques

2. Combitube

- a. Pharyngeal and endotracheal tube molded into a single unit
- b. Indication
 - Alternative airway control when conventional intubation measures are unsuccessful or unavailable
- c. Contraindications
 - 1) Children too small for the tube
 - 2) Esophageal trauma or disease
 - 3) Caustic ingestion
- d. Advantages
 - 1) Rapid insertion
 - 2) No special equipment
 - 3) Does not require sniffing position
- e. Disadvantages
 - 1) Impossible to suction trachea when tube is in esophagus
 - 2) Adults only
 - 3) Unconscious only
 - 4) Very difficult to intubate around
- f. Method
 - 1) Head neutral position
 - 2) Pre-intubation precautions
 - 3) Insert with jaw-lift at midline
 - 4) Inflate pharyngeal cuff with 100 cc's of air
 - 5) Inflate distal cuff with 10-15 cc's of air
 - 6) Ventilate through longest tube first (pharyngeal)
 - a) Chest rise indicates esophageal placement of distal tip
 - b) No chest rise indicates tracheal placement, switch ports and ventilate
- g. Special considerations
 - 1) Good assessment skills are essential to confirm proper placement
 - 2) Mis-identification of placement has been reported
 - Reinforce multiple confirmation techniques
- XIX. Special patient considerations
 - A. Patients with laryngectomies (stomas)
 - 1. Mucous plug

- a. Laryngectomees possess less efficient cough
- b. Mucous commonly obstructs tubes
- c. Tube may be removed/ cleaned and replaced
- 2. Stenosis
 - a. Stoma spontaneously narrows
 - 1) Potentially life-threatening
 - 2) Soft tissue swelling decreases stoma diameter
 - b. Trach tube is difficult or impossible to replace
 - c. ET tube must be placed before total obstruction
- 3. Suctioning
 - a. Must be done with extreme caution if laryngeal edema is suspected
 - b. Procedure
 - 1) Preoxygenate
 - 2) Inject 3 cc sterile saline down trachea
 - 3) Instruct patient to exhale
 - 4) Insert suction catheter until resistance detected
 - 5) Instruct patient to cough or exhale
 - 6) Suction during withdrawal
- 4. Tube replacement
 - a. Lubricate appropriately sized tracheostomy tube or ET tube (5.0 or greater)
 - b. Instruct patient to exhale
 - c. Gently insert tube about 1-2 cm beyond balloon cuff
 - d. Inflate balloon cuff
 - e. Confirm comfort, patency and proper placement
 - f. Ensure false lumen was not created
- B. Dental appliances
 - 1. Dentures, partials, etc.
 - 2. Best removed prior to intubation
- C. Airway management considerations for patients with facial injuries
 - 1. Facial injuries lend to a high suspicion of cervical spine injury
 - a. In-line stabilization
 - 1) Trauma technique endotracheal intubation
 - 2. Foreign body/ blood in oropharynx
 - a. Suction airway
 - 3. Inability to ventilate/ intubate orally